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Abstract

-A program to investigate the coupling problems of high birefringence fibers was

initiated.in 1083 for Naval Research Laboratory under Contract N00014-83-K-2029.

The technical monitor was Dr. W. K. Burns of Naval Research Laboratory. The work

performed under this contract is summarized in this report.

A fiber is birefringent if it has a non-circular core and/or cladding, or is subjected

to anisotropic stress. Currently, the loss of fibers with embedded anisotropic stress is

much lower than that with non-circular core or cladding and therefore these fibers are

of interest. Central to any coupling problem is the distribution of fields in the fibers.

To date, very little is known relative to the fields of polarization modes in biaxial

. fibers. This is the main thrust of our study. We have used a perturbation method to

study the fields and dispersion of polarization modes in biaxial fibers. In our approach,

the inclusion or exclusion of a term is determined by the differential equation, the

boundary conditions and the symmetry of the problem, and does not rely on the prior

knowledge of the fields in the fibers. The dependence of the fiber birefringence on the

index differential and index anisotropy has been studied. Now that the fields in high

birefringent fiber are known, the excitation of high birefringent fibers can be analyzed.

Methods for studying these excitation problems are indicated and some of the results

are presented.

.4.
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1. Introduction

Since low-loss fibers were realized some two decades ago, interest on fibers has

been evolved from multimode fibers to single mode fibers. In reality, all conventional

single mode fibers support two orthogonal polarization modes. As these polarization

modes are nearly degenerate, fields in these fibers are easily converted from one polari-

zation mode to the another if there is slightly disturbance or perturbation. For sophis-

'-. ticated systems like coherent communication systems, sensory systems based on inter-

ferometric principles, or systems utilizing polarization-dependent components, these

changes in the state of polarization would lead to signal fading and noise. The polari-

zation mode conversion, being the result of mode coupling, can be greatly reduced if

the polarization mode degeneracy is removed [1,2]. With polarization mode degeneracy

removed, fibers become highly birefringent. since their propagation velocities are quite

different. If the birefringence is sufficiently large, and the fiber core is sufficiently

small, only one polarization mode can be guided by the fiber. Then we have single-

mode single-polarization fibers.

That the polarization modes in the conventional single-mode fibers are nearly

* , degenerate can be traced to the fact that these fibers have : (i) nominally circular cross

sections, (ii) isotropic index and (iii) azimuthally independent index profile. When one

or more of these conditions is removed, the polarization mode becomes non-degenerate.

The simplest and most obvious examples are fibers with noncircular cross sections (and

isotropic and 0-independent, index profiles). Fibers with either an elliptical core, clad-

ding or both are of these category and have been studied extensively by many authors

Fibers can also be made nondegenerate by making the core, cladding or both

anisotropic. If either region is biaxial, a. fil),r becomes nondegenerate even if it has a

perfectly circular cross section. Through mechanical stress, isotropic materials can be

. A
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made anisotropic. The stress can be built into the fibers by the fabrication processes or

applied after fabrication. Of particular interest is index anisotropy induced by lateral

stress. Although fibers with uniaxial index of refraction have been the subject of

several studies [7-91, fibers with biaxial material have not been examined until recently

[10-21]. Despite of these studies, fibers under lateral stress are not very well under-

stood. This is the subject of this work. Recently, a series of papers on high

birefringence fibers have been published by Snyder and his associates 116-21]. However,

there is a basic difference between their work and the work reported here. In their

-- -2' work, they have assumed from the outset that LP' 0 mode is coupled with LP '1 mode,

and LP' 0 mode with LP'l mode. here, no assumption has been made relative to the

*coupling between any polarization modes. All modes are included in the consideration.

The inclusion or exclusion of a particular mode is determined by the differential equa-

%%.' tion, the boundary conditions and the symmetry of the problem, and does not rely on

our prior knowledge of the field distribution in the fiber.

In the following, we begin by reviewing the effects of the stress on the refractive

index. Under lateral stress,an isotropic medium becomes biaxial [22,231. Therefore

waves guided by biaxial media are also reviewed. Complication associated with biaxial

media are noted and ways to solve the problem are described. This is done in Sections

2 and 3. We then proceed to study the fields and dispersion of fibers with biaxial core

and cladding (Section -1). The numerical results are presented in Section 5. Also dis-

cussed are the similarities and differences between elliptical fibers and biaxial fibers.

The coupling of biaxial fibers is discussed in the last section. The differences between

low- and high- birefrringent fibers, so far as coupling is concerned, is also noted there.

2. Waves Guided by Uniaxial and Biaxial Media

Vhen a solid is stressed, its refractive index changes and this is known as the

photo,,lasfic effect. Consider an isotrol)ic material with an index n under stress-free

condition. WVien st res;sed, its indices ab mg principal stress directions become:

. .. . . . . . . . . . . .. . .
. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .- h
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nI :_' n + [C, Tx + C2(TYY + TZj1

ny nen + IC, ' Y ± C2(T,, +± xJ

n, :_ n + IC, T , + C2(Tx. +± Y)

where TXX TV and TZ3 are the stress components in Cartesian coordinates and C,

and 02 are t he stress-optic constanrts. These stress-optic constants are negative and

tire of the order of 10-12 M2 /N in MKS system. More importantly, I C'f is a few times

larger t han I C,j1 [22,231.

Since the fiber core and cladding regions are made of different material, the ther-

rnal expansion coefficients for two regions are likely different. After fibers are drawn

from the preforms and allowed to cool down, lateral1 stress is frozen in the fibers. This

is the basis of built-in lateral stress in many pol arization- hold in g fibers [24,25 and 26].

If in addition, the fiber cross section is not, circular and we have Tx ;e TYY In the

absence of any build-in tx ia.] stress (T,, = 0), the above equations become:

Nn_ - n + [C, T.,, ± 0 2'ryy I =e n. - (C2 -C,)Txx

nyn n +±[C, I ± Y C2Tx1 s- n, - CCT.

n en +[C'2(Tx. ± y~

Clearly, the core and cladding regions are biaxial with n. X nx ;e ny.

To stidl the waves guided by fibers with biaxial core and/or cladding, it would be

nrccessary to examyine the waIves gulided by biaxial media [27,28]. For this purpose, we

H begin %%ith the time-harnionic Maxwell's equations for biaxial1 media:

V Vx (X.y,Z) =j1' 1XV
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V fl(x,y,z) = 0 (3)

V (07 -(x,y,Z) = 0. (4)

A time-harmonic variation of the form e -  is understood. In a matrix form therelative

dielectric tensor T may be written as

n2 0 0

e 0 n 0 (5)
0 0 n,

When the geometry of the guiding structure and the relative dielectric tensor are

S"independent of z and waves propagating along z direction are of interest, a term e+j#?

can be factored out explicitly. Here 0 is the propagation constant of the guided mode.

"-.: It is also convenient to separate the field components and the V operator into

transverse and longitudinal parts:

;(x,yz) = I9(x,y) + k' e(x,y) 1ej' z  (6a)

f(x,vz) = [t(x,y) + Ai, hz(x,y) (e (6b)

PV V+j'., =[ +  -- ] + jo . (7)
Ox .-

where A. k a unit, vector in +z direction and the subscript t signifies the components

-..- transverse to the z direction. In terms of these variables and Vt, (1) and (2) become

* -"Vt x t = jwjtohii (8)

k x (j,9t - Vte2) = jwot (o1

V t x h' = - jwE0 2eA, (10)

4." 5



i. x (jrht - Vth . )  -j' t ()

where

Zt 0 n: (12)

By eliminating h, or V from (9) and (11), we obtain-At

j!t ji3KVte - Jw/oK'h x Vth, (13)

i: =jw cAi x K l*t Vte 2-j9Jii x K A, x Vth, (14)

AA where

';7;-" I -2  0
: .'K K3  (15)

ox

K- 0 K -2

- k. n I-

and ko = w2 tj o %. Differential equations for e and h can be obtained by substituting

(13)- (11) into (3) and (4):

0 e a2e 2) 02hx
+1 2 (,en 2 e+ =w 2 0 f(n 2n (16)

9x2  02 2 x y

02h 0 2e
+1O +Ih2 1 2 2 n 2)-+h wf(n) 2 (17)

Ox2  C' Y x(y

Once e. and h7 are known, (13) and (14) can be used to evaluate the transverse field

.4' components.

£- For isotropic as well as uniaxial media (n, = ny), clearly Kx = Ky and e, and h.

'( are inouipled and (16) and (17) becomre the usual wave equations for e and h. In this

_.4

*' .. . + j . , K, . . . . . . . ..... . . . . .. ', 4 :. . . .,. ., .:
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fashion ,the dispersion relation for uniaxia.l fibers can be and has been derived [7,8,9].

However, the differences between isotropic and uniaxial fibers are noteworthy. For iso-

tropic fibers, the transverse electric fields of LP 0, mode is mainly along one direction, x

or y, and 1-6, /1 j is approximately a constant. In uniaxial fibers, on the other hand,

both ex and ey are present. Each components of e, and 1t have to be expressed as the

[-': sum of two parts, one involves the ordinary index of refraction, nx = n, = no and the

other the extraordinary index of refraction n. = ne. As a result, [ 9, /1 !;, is not a

constant.

For biaxial media, n i ny / n2, e, and h. are coupled in general. Two-

dimensional wavcguide structures, integrated planar waveguides for example, are excep-

tions. For the infinitely large, two dimensional structures we can further azsume

* .. ~ - =0 or - = 0, and (16) and (17) again can be reduced to the usual uncoupled
* Ox Oy

wave equiations for e, and h1 . This is precisely the approach adapted by Burns and

Warner in their study of uniaxial planar waveguide structures [24]. No such

simplification is possible for the fibers with biaxial media and herein lies the crux of the

problem. In addition, K 2 and K 2 can be positive or negative depending on the values

of /J, ko nx and k0 ny. Thus (16) and (17) can change from differential equations of

elliptical type to that of parabolic type as f changes. Thus for biaxial media, (16) and

(17) arv inhrently difficult, to solve, and no exact solution is known.

Alternatively, e, h z and h, can be expressed in terms of e From (4) and (6a) we

have

. t z

By performing vector product of V t on both sides of (8), we solve for i x VthZ. Simi-

*.-,-. larly, (0) is used to solve for i, x . Upon substituting the expressions so obtained

into (11) a diffrential equation for et is obtained:

J.*-"
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4'? + (ko c - = V~(~~)- '~V •Ia2 3 +jt 2et -"Vt[(Vt'.-) -- Vt pe*t -gj] 1a
c

Similarly, an differential equation for ht is also obtained:

=17 x 1 -t)- 13 h i, x lt - ", x Vth, (19b)

In component, form (19a) can be written as:

O ~~n; 2~ n 2 j-n~
2 a2e

dx + + ko -L (n2- N2) ex - (20a)

n0c 2e 02e n2  n 2n 2  92 e

- Y + Y + Q - (n - N2)e= - (20b)ax..2ny 2 Ox 2  2 ax ay
' .

where N 13/k. is the effective index of refraction of the guided mode.

Although ex and ey are still coupled in (20a) and (20b), the differential equations

are simplified. In particular, for the fibers of interest, I n2 - n 1/n2 <<1, the terms

in the right hand side of (20a) and (20b) are small and can be treated as perturbation

terms. Then approximate solutions can be obtained from (20a) and (20b). This will be

(lone in Section 4. lowever, some features of the solution can be deduced from (20a)

, and (201)) without actually solving the differential equations. Clearly if e is an even [or

-od(d function of x or y, then e must be odd [or even) function of x or y. When

exl)ressed in terms of cylindrical coordinates r,O, ex and ey can be written as Fourier

sine and cosine series. Thus for the core region (r < a),

*." e(r,O) = eO(r) + V1 4' (r) cos iO + e '(r) sin i€] (21a)

.= _[eey(r) + Vje) (r) cos iO + eyi (r) sin i€1 (21b)
,-- .'.i=1

-* - , 4 * -.-. .--. ~-
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and for the cladding region (r > a):

ex(r,¢) = eD(r) + 0[ex (r) cos io + eP3(r) sin i] (22a)
i=I

e eD(r) + V[e c(r) cos io + eDs(r) sin io] (22h)
-.7" i=l

The subscripts It and D are used to signify that these terms are associated with the

core and cladding regions respectively. From (20a) and (20b) it is clear that the sine
and cosine series of ex are coupled respectively with the cosine and sine series of ey. In

addition, the even harmonics are coupled only with even harmonics, and odd harmonics

with odd harmonics only.

;-a

3. Fields and Boundary Conditions for Weakly-guiding Fibers

An isotropic fiber, with core and cladding indices n, and nd respectively, is viewed

as weakly guiding" if nr - nd << nr. Under the condition of weakly guiding, I VXte.

and I VthI , are negligibly small in comparison with and and therefore

('an be neglected. Then from (9) and (11) we have:

",i" t no 2 i lt(3

which is accurate to the order of (n, n nd)/nl. Thus for weakly-guiding fibers, it

and h are related in the same manner as that of uniform plane waves in isotropic

fled(i:1 [29]. This is a basic feature of fields of weakly guiding isotropic fiber.

Now consider weakly guiding anisotropic fibers. In the core region, the indices

- . along three principal directions are nrx, nry and nrz. Correspondingly, the indices in the
cladding rgion are nd, ndy and adz. The core radius is a. By weakly guiding, it is
clddn rv, r d, -n d

meant that I - n,(,x)/nx etc. are small and are of the order of 0((). Under these

conditions, foll,,wing the same argument. presented by Gloge for isotropic fibers (29], we

I-:.:.: -

%r "w%-; .% : :5 --) : : ; .--. .-- -. .,,:. -. --... : .- -- --. -. .-, . .. --. .Le . ... .



r.k. -0-

have

ht - 0(

ht a X 'e -et(24)

With - known, exact expr, ssions for h. and e, and approximate expression for 1t

can be obtained from (9), (18) and (2.1).

It has been noted in the last section that the cosine series [and sine series] of e.

an ine seies[nd cosine seriesi of eY are coup1 led through the differential equations

(20a) and (201)). We like to show that, the same conclusion can also be reached by con-

- sidering the boundary conditions. To enforce the boundary conditions, it is expedient
to exprs-e and h in terms as er, e, hr and h . In terms of the coefficients intro-

u(lced in (21a) and (211)) the field components in the core region are:

2e = (e Rc e. i

+ (et - .,no + el l sino + (e' ± 2el - ,) coS

± 3 [-eR- + -,Rc, + Rs + eR,
-- -- 1 y j + ] s i n j O

j-

0O

j=2

na [c",/ + -r Y P, ,-j2 e, + el + n ' ±- e, N

2 1 r n 2 r

n. n'$2,~ re'±2e)± ~ ,±2e)cs~

nrr
21 ± 2eI+ + 2 +xO -e ( e R + (

02X 0 0 2 C2)CS

Srz
irz
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(e, + es + j+ e
2 xjf xj r Fj x

± =~2 r __

rz

+ x _cC + Re t + + C ec eLR

.4.- j= 2  'rz jI

-!-r (cs+,'eg '- Rj07 + +±! R9 COj (6

n2  YJ Y cijj~ r yj' r A ~+1)c~(6

* ~pr~= Re3 ct - s + Re Rs)±1.it)h r(e c ex + j c;' I (,f+es sn

+ ~ er-{~t + eR Re + R

(,Re' 2 )2(cniin

+ [(j-e !~~ +e (j1est+ - (j-1e + i+)e+

+ 2 +~ { r e ' - +eSI

± I- (- eU It + e,~ - +J.)R (~~yi~lcs

j(27

Rr + (j + . jleR- j+1



-"T-T"

1",,".11',

-ho [In,Xc~X + nryeRSI
W- lry y IJ

.irx2 2r- ± n2 - ry y...+ .. x+nxR + ry-, cosx2 +x A r y2rx x2 .yO, rysyin
-

.,:no + __RF .2eRF 2_Rs 2 _2Rp co
±ll~nxex j-l + n.Xj+i - nryeyj-l + nry;j+l cosj

+K 2, nrell 2s_ +  eR, 2 n ec 2 2Re sn (+ X' In + nrx + ryy J-xxj-1 IXlj1ryey j +I 1sno(8j= 2

In these expressions a prime indicates 0/Or. Corresponding expressions can be written

for the field components in the cladding region, with the superscript R replaced by D

and nrx etc. by ndx etc.

At the core-cladding interface (r a), eo, ez, d r7 ho, h, and b, should be con-

tinous. It, is known that when the continuity for the tangential components of P, and

1i are satisfied, the continuity for the normal components for 6 and 1 are automati-

cally satisfied [30] Since sin jO and cos jo are orthogonal functions in the range (0, 2ir).

* the continuation of the tangential components of P and 1i amounts to the continuation

of the individual Fourier coml)onents. More specifically,

Re Its. Dc~ Ds (29a)
n1 X eyl eI +

V+ 2 + e + + +
an n rza

3%-2

_ x le ±o +-$Ie+ _(y[(.t e 5 (29b)
a.z nd a.

±~p + eM n 2 ePr ± n2 e Ds (20c)

rx x~A I ry 1..'*- d. XX I A. Y
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'c,I + + e I x I (29d)

2 e + eRr _ -CD + D
R - 2 (30a)

ex X0 y 2o ;

Re + 2R "- _" = Dc + D - eDs (30b)

y2 0 x2 e 0 e 2y2  x

2
-(2 Ri +enl +i r)+ +le~ + s

2 x2 0~ x 2y a + y 2y2 a
rzd a 1 z 2 ae2

=-n'.. n S,D. _x+_ c + _ r,+ + e Ds
*1-."2 -. + nrx 2  + - e2 R (c(302)

2 x + 2 xc + 2 2dyey0 -dyy2 y2

n da z a anf2l x a rx2 n2 y O yaJ2 dxy2fdy

rx x2 ry x Dt~y Der~x 2n~e nd e~

i2= a{ - + e3 Y + 2(e g + e,2) (30g)

+ 2':0" - ej'o± (e- e

2= (pcR + 2eD'- ± 2), ( 2 -2 eC) (3Oh)

_ ,. )And for j>2,

,..x x2r O r ,, dxx x x yj

sR 2212

" ' . . " - ;2.'. " ' "- - ..+" .- :" . - - .(

rxx yy yy2 d 2 d O d



Re + eC+ 1  eRs -e+eR D5 +ep~~ Oef~ + OF~ + eD+, (31 a)

Rs Rs + ,RF + CRc - Ds LDs + ,DF + e (31 b)

22

a aa
rrz

±-l-y R e R-ei±+J-e s4 +~~ ehi) Rs1c

n2_ ±1, A+O

1)~~ ~ ~ xj j+ j
aj a

+(e Ds'--e,q e a+ y+
2 A A ayj- a

rzz a

2 ajl A+

naaa

U n7 2eRe 2 fl~e~+ ~Rs 2 ~

ci 2 + f 2 Ds + 2  Ds (31 e)

n6xe d I nyyj de
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112 eRs I + 2- n 2 eRc 2eRc
rxex j-I "rx xj+i rye yj-i -ryey j+I

-2 Ds + n2 eDs + n2 PDc -2 Dc (31f)- dxx j-1 Idx x j+1 dy y j- I - dyey j+I

a ~~Rc ±e R.- + Rp

.[-x j X + YJ-1 C + I

± [(j-1)eRFL + (j+)eeR+l - (j1)eRs_. + (j+)e RP+

%- a[-ex ± j+,c + i-, + 1

+ [(j-l)_ + (j +l)e +l - (j-l)eD, 1 + (j+l)e ]+ (31g)

aRs. i Rs , ^Rr # + .,Re
aex j-I exj+I+ eR y j+

+ ( - (j- )eC,' I - (j + l)ep+l - j)eRI% +(j +1)eR+,j

fa[eD,' 1- eD,+ 1' + + c r +

.± 1_(j-l)eDs - (j + )e - (j-)eD_ +(j +)eD+] (31h)

Examination of these boundary condition equations reveals that the cosine series of

e. are coli1 ed with the sine series of ey, and the sine series of e) with the cosine series

of ey. Furthermore, the even harmonics are coupled only with the even harmonics, and

odd harmonics with odd harmonics. For example, in (30a)-(30d), eX0 and eXo are cou-
pled with R P eDc and e y and through these terms to the higher order even har-

pld~ x2 1 Y2  x2

monics.

In the case of isotropic fibers, ex and ex [or e and ey] are needed to determine

the fields and dispersion of LIP0, mode, No higher order terms is required. It would be

interesting to see if the same is also true for biaxial fibers. Suppose that only one term

from each series is kept, (i.e., e, for the core region and eD for the cladding region).

Then, the boundary conditions (30a), (30c),(30e) and (30g) become

*4%

Iw..v , ,' ., . . .:. :',: .:i ... , , ,: " , ') * 2 : , ' , , . .. -.. : . .. . .. . . . . .



CA" A (30a1)

nrx R' :d-_D' (3oc1)
n Cxo , xO

2 2 D 93 X0

nrx eO - ndx enD (30el)

" R=et D (30gl)

For isotropic fibers, nrz = nrx = nr and ndz = ndx = nd, (30cl) is identical to (30gl).

Recall the expression for eo is exact while that for ho is approximate and accurate to

O(c). When terms of the order of 0(() or smaller are ignored, (30el) also reduces to

A (30al). Therefore in the ease or weakly guided isotropic fibers, the boundary conditions

, .. are simply the continuation of eo and e'x0

For biaxial fibers, nrx Vnry ? nr (30cl) and (30gl) are not identical. The pres-

ence of n2 /n etc. makes it impossible to satisfy all boundary conditions if e Ro and

eD are the only terms kept. There have to be the higher harmonic terms.

Suppose only the leading harmonic term of cosine series of ex (e, and exD0) and the

sine series of ey (eC' and ey ) are kept. There are two unknown Fourier coefficients for

the fields in the core region and two in the cladding region. In addition the propaga-

tion constant /3 is also an unknown. Four equations [(30a), (30c), (30e) and (30g)]

are used to eliminate four unknowns. The result is a dispersion relation determining f

or the effective index N. If desired, we can use the first two or first three harmonic

terms of the sine and cosine series, then we have, respectively 8 or 12 unknown

coefficients. Thus 8 or 12 boundary condition equations respectively are needed to set

tip the dispersion relation for fl. By solving the dispersion relation, we can determine /3

-'. as a function of various fiber parameters. In addition all but one unknown Fourier

coefficients can be expressed in terms of one Fourier coefficient. The undetermined

Fourier coefficient can be determined from the field strength of the mode or the power
@11 %"
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carried by the fields.

4. Approximate Expressions of e. and ey and Dispersion Relation

To derive the approximate expressions for the transverse electric field components,

we treat the right-hand terms of (20a) and (20b), as perturbation terms. Thus, by

ignoring the terms on right-hand side of (20a) and (20b), we obtain the zeroth-order

solutions, e( °) and e (°). With the zero-th order solutions substituted in the right-hand

side terms of (20a) and (20b) and treated as known quantities, then (20a) and (20b)

become inhomogeneous differential equations. The particular solutions for these

differential equations are then combined with the homogeneous solutions which are

- exactly e( °) and e(01 Thus we have e' 1 and e~') which are accurate to O(E).

Two lowest order polarization modes are mutually orthogonal to each other. In

one polarization mode, its ex is described by a cosine series and ey by a sine series. For

the other polarization mode, ex and ey are given by sine and cosine series respe( vely.

In this section, our attention is focused on one of the polarization modes, namely the

mode with a cosine series for ex and a sine series for ey. Since no restriction is placed

on the value of nrx relative to n, or ndx relative to ndy. The other polarization mode,

can be obtained simply by interchanging nrx and ndx with nry and nay.

Fields in the core region:
4to.

To calculate the fields in the core region, we introduce two new variables,

x' - (nry/nr,)X, and y' = (nrx/nr,)y. Thus (20a) and (20b) become:

02- + + -k. (n N2) ex = n (32a)

9x 2  )y 12 n 2 0' nr,n,, Ox9y,

£10

W..

4~a
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2_ 2 a2e;-+ Y + 2 (n2 2 ) r rx  (32b)

x,2 +yn nrynrz ax, 0y

When the right-hand side terms in (32a) and (32b) are ignored, we have immediately

the zero-order solutions:

e(° ) = Ao Jo1-- Urx L') + -Am J, n Urx ,) cos mS' (33)
nrx a ~ rx a

e(°) = 'Bm J (or Ury " sin mO" (34)1 Z nry a

where
Urx ka n2- N2  (35a)

Ury -k 0a inr
2 -35b)

r= [x2 + y' 2 - 1/ 2 = [x2 + nrx y2 -1/2  , -ta nr (35c)
2nrz Drix

r" = 12  2 2 + y2-n/2 nrzY

r I 2 ± ' xO taIf(-) (35d)

As stated previously, only cosine and sine series are kept in (33) and (34) respec-

I tively. In defining the new variables y' or x", the coordinates are scaled by constant

factors btit there is no translation in the origin. Tbus the symmetry properties of e.

and ey with respect, to x'', y', 0' or q,' remain the same as those with respect to x

* and y, and O, as discussed in Section 3.

With e(°) and e!°) known and substituted into (32a) and (32b) respectively, (32a)

" and (321)) becon a set of inhoniogenecus differential equations. Their solutions are

comprised of two parts: a homogeneous solution and a particular solution. The homo-

geneous solutions are of the same form as the zeroth-order solution. In view of the

: .: .... .,... . ,-.- .., : :. -.-,:.- ,: -,. - : : .,,..:.: . ..7-:,::,-:: , :: ,,. : . .. : ..... ::,:,: :,.:



functional form of eO) and e(°), we can expect that the particular solutions can also be
-nn_ L r ) j rz r )

expressed as series ofm cos rX sin m 4. By substitut-
nry a nrx a

ing these series into the left-hand side of (32a) and (32b), performing the necessary

differentiation, and comparing the resulting terms with those on the right-side, the par-

ticular solutions are found. In the lengthy manipulation, the recurrence relations for

Bessel functions 1311 are used repeatly and we also note in particular that Ur i- Ury.

Then e 1) and e I1, accurate to 0((), are obtained by combining the the particular solu-

tions with the zero-th order terms:

mo r')osm
0= A0 J0(- z UrL) + "Am Jm(n r Ur ) cosmSnr a n a

:-)2- 2) 2_ 2
,. ,. + 1 n ry ( n r z -n rv n y)

4 nrz(n2Xn) N2

00 BrJ(- z r os '+2Bm Jm-2(__ Ury a cos (m-2)0 - Jm+ 2( Ury a) cos (m+2)0]
_-m mI ry a y

(36)

'" ":e I)= m J r )sin mO"'

n a
ry

2- 2~~n~ n -2 2
2: + -1 nrx(nz-n, x-N 2 { 2A 0 J 2 ( n  Urx r) sin 2,
4 nrz(n-nx N 2  nrx a

CIO'- + A m - "nr r)

+ VAm [Jm+ 2 n U rx a) sin (m +2)b - J, 2( n  Urx sin (m-2)1}
I TX a Tx a

(37)

+.%%
o-. . . .. . . . . . . . . . . . . -

° ~
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Note that I and l 2 /[ 2 2 2 a

nrrz-nrx /nrry-nrx)] and Iy nrrr[.(n,,-nry)laeoth

order of 0(1), while I (n 2-N 2)/N I and I (n2-N 2)/N 2 1 are of the order of 0(().

Fields in the cladding region:

Again, new variables may be introduced to simplify the differential equation. In

particular r', 0', r' and p'' are defined in the same fashion as given in (35c) and (35d)

with nrx etc. substituted by ndx etc. For isotropic fibers, N of a guided mode is always

larger than nd. For biaxial fibers, complication arises particularly for modes near cutoff
since ndx X ndy. Near cutoff, it is possible to have ndx < N o Ndy

depending on the relative values of ndx and ndy. Thus three cases have to be treated

separately. For convenience, we define:

"dx = k:a VN njx (38a)
. Wdy = koa Vf _ ndyY(3b

x k0 . v~ N2 (38c)

4..•

dy = koa N 2 "- (38d)

For N > ndx and ndy, W x and \V, are positive. Following the same procedure

described in previous section, we obtain:

e = Co o  r I r') + Cm l m Wdx r')cosmO'

ndx a + ndx a

1 ndy(nd,-ndy) n,-N2

4 nd(n2 -n y) N2

"' . - ..' .....-.... .. '.. .. ... ... -..".
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nm2 ( Wdy r) cos (m-2)0S - Km+ 2( d Wdy A)cos (m+2)0'. .£

- , D, [Km-2( a ry r)
. . . 1ndy

e(1) 'D m KMn Wdy ) sin mo"'

! ady
2-n 2 n2N2 nd

1 d(ndz ndx) ndx-N 2  rdr

{ 2C° K 2( w dx -) sin 20
4 nd,(n 2y-n ) N2  ndx a

-- 00 Kn 2 ndz r)
N Km mWd+ ) Sin (m+2)0 - Km2 nd W a sin (m-2)0']}

I ndx a ndx

'4- (40)

I ndx > ndy, there exists situations where ndx > N > ndy. With Wx > 0 and

€. .- U~d > 0, the fields in the cladding are described by a mixture of the Hankel function

"and the mIodified Bessel function. The presence of the Ilankel function signifies the

existence of the leakv waves in the cladding region.

""~") non d . ,rd ri m l

e ( 
) C ('0 Wdx ) + ECm Kd Wdx ) cos

nd, a ndx a

I nd(ni,-ny) n2 -N 2

J"4 ndz(ndxndy N

11( 2 [ ll n12 7 IdT y 1) cOS (in-2)0 - 12)+l2( n d 1 Jdy ) cos (m+2)0 JSn ndy a i d a

(41)

.-.

.9.:
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(= Dm Hi()-, Udy - ) sin mo"
1 n dy a

_2 111 nd2i-N 2  dI nd.(-n) N2 { 2Co K2 ( d WdX r) sin 202- 2 N 2  a
nd (ndy ndx ndx

00 , ndz r ) n d , r )
+ 'Cm m+[Km2(& Wdx - sin (m+2)0 - Wdx -) sin (m-2)0]}

I lldx a nd x  a

(42)

On the other hand, if ndx < ndy, there may be situations where U2f > 0 and

W2y > 0. Then the fields are given by:

e,) = Co i|12)( nd__ Udx m  n Udx )os mO
ndx a 1 ndx a

nd,(n2d-n2y) n2 -N 2

4 nd.(n2 -n 2 ) N 2

ZDm Km 2 ( Wdy a COS (-2)0 K- +2( Wdy ) cos (m +2)0 l

1 ndy a ndy a

(43)

ey~ I  ]DmUm rd, r"
- DM KI( Wdy sin mo"

ndy a

2 -nd2(,,L- n 2-N 2  
__

"_ ndz dx d) Nn { 2C 0 112)( 1 d1 Udx r) sin 20

nd(ldy- nx) dx a

+i[n)+ 2 Udx -)sin (n+2)0- 11)2( (2 Ud ) sin (in-2)0]}
m 1ndx ndx a

4



(44)

Further approximations:

Before imposing the boundary conditions, it is necessary to revert r' , r"',) and

4)'back to r and 4). For points in the core region,

[X2 +- 1-1/ 2  r (1 1---(-cos2p)(4a
rz 1rz

n r2

r [- X 2 +y 2 j-1/ 2  r -(I- --!)(I + cos24p) (45b)

2z rzr

-(1-- sin20 (5c
2 n4d

4 1r

Bra)

2 nr

co mrx cos mo + - rx (m2) '-( - )cos2 +[2) (45eU )]
' 1rx a n~ a4 1rx r

si o i '-nz [i ( ) i m 20 4f

4 nI

Making ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t use of ths aprxmain incnucio ihNumn' dito hoe
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2

Jill( Ury Jl r Vy -L ( -- )(1- +cos20)[J' ( Ury
.ry a nr ay 4 1 nry a n2 ry a

where J' r1 indicates the derivative of the Bessel functions with respect to its argument.

Use these approximations and sorting out the terms with different harmonies, we

have

~rz r 11rz r (I- U 11 rz U r
*2 ex1t) ' A o [ J0 (- r  Urx IL) + - r Urx -(_- nJx r )

e( _ AO J - l--g-jr +'-- Ur

. nrx a 4 nrx a nr n1rx a

i9
2

A,, nr2( Ur(1- )J 2 ( - Urx -)nrx a nrx a 4 nrz Bx a

9 9

Uri r 1 rx 11 rz r rA - n' Urx -(- 2)Ji(- Ur) cos20
°4 nix a Ur n a

9

*z ) nr r n nr r
+ A, ) J 2 (- Urx - U 1 - J 2 ( rx 2

nrx a 4 nrx a r nrx a

nrz rnra _. 4 '- rx Dlf rz

A4 nrx ar- r0 2 W 4( .! rx-) + A-(1------)MJ(- Urx -I) Jcos2o~
8 r4 a 8an rxn a 4 nri nrx a

n2 n l n.'J(n, r

+n___ 1 u ( )j, 2( nW2 r, x r 2- n-r-a z U ]oA2) (1j 2 ( U 1 ) cos4o
+A- 8a U n a 4 nrra n rx a

4o

An r Ur Jr( ri aI- 4) 1  a n2  n r r cos'F0

4 ,- Urx -- (l---2 WJ4( r r - o,(

aa,, a 4 n a

*o

U4x W( J4( 2 U0 r ) - P cos6
4 A 8 nrx a D nrx a 4 nri n, , a

i

.*, . .- ,' - . - ' . , - . . . . . .



4 11 11 -n2~) N2 1 D1 yry a

+134 J 2 ( Ur I os

n rl r+B 9 LA ( U~ 3 cos204~

-. yr a

B 4 JJ-!r- Ur r) COS6j +. (46)
Dry ya

2

B3 2 --- U I~z Ur y 1 ( )JI 2 (-~ Ury -L)J sin2o
y D1ry ra 4 Dry a a r

r 4

B 4 I r ry r r ( , 1W4 1n z Ury a 4 ' - n rz ) 4( n ' U r siii2 o

8 ry a 2 ry a 4 Dry B.y

rz ry

1 nz 1 YJrz  rz -1 6 ry -L sin40!

-B 8 1 r - - ( "r r 1 )J")-: Uy -L) + n(1  )j(± 1 . i- i6
41 8n ~ ra 11z ry a 4 1ry Dry ra

B4 J -'Ury ay )yU tZ Ury1)

11r r



-- I -- Ury a- 4l l n( P6( rn ra"r• -Uy- n1 11(n Ury si8

i 2 2

1 nrx(nrl nr) nr2-N"
n 2- 2[ 2Ao -A 41 J2(- Ur, I) sin20

S.flrz(T J-n ) N2  nrx a

+ A2  J 4 ( LU'  -L ) sin4
nrx a

+ A4  J6( -!--. u F-) sin6o J +.. (47)

By rearranging the terms in (46) and (47) in the forms of (21a) and (21b), we have the

Fourier coefficients for the core region,

eXR(r) = Aofoo(r) + A2fo2(r) + B2g02(r) (48a)

ec2 (r) = AOf 2o(r) + A2f22(r) + A4f24(r) + B4g24(r) (48b)

CX4 (r) = A2f42(r) + A4f44(r) + B2g42(r) + B6g 46(r) (48c)

ey,2 (r) - B2P22(r) + B4P24(r) + Aoq20(r) + A4q24(r) (48d)

ey4(r) B2p 42(r) + B4P44(r) + BOp 46(r) + A2q42(r) (48e)

Explicit expressions of foo(r) etc. are given in Appendix A.

Similarly, from (41) - (41), we have for the cladding region:

eo(r) CO hoo(r) + C2 h02(r) + D 2 k02(r) (49a)

ex2c(r) CO h20(r) + C2 h22(r) + C 4 h24(r) + D4 k24(r) (49b)

eOd(r) C2 h42(r) + C4 h44(r) + 35 k42(r) + D6 k46(r) (49c)



er) D2 r22(r) + D4 r24(r) + Co s- 0(r) + C4 s. 4(r) (49d)

eDs(r) D2 r42(r) + D4 r44(r) + D6 r46(r) + C2 s42(r) (40e)

Expressions for b00 etc. are also listed in Appendix A.

Dispersion relation:

Three leading harmonic terms of the even cosine series of e. and the even sine

series of ey are kept in (41), 42), (50) and (51). The coefficients Ao, A 2 , A4 , B 2 , B4 and

B are pertaining to the core region and CO, C2, C4, D2, D4 and D6 to the cladding

region. Substituting these equations into the boundary condition equations (32a), (32c),

0 4 (32e), (32g) and (33a), (33c), (33e) and (33g) with j = 3 and 5. we have 12 linear equa-

tions which can be cast in matrix form:

.1 Q 1i 912 Qi9 Qla Qib QIc AO

Q 21 Q 2 2  Q 2g Q2a Q2b Q2c A 2

Q31 Q32  Q39 Q3a Q3b Q3c A 4

Q41 Q42  Q 4g Q4a Q4b Q4c B2

Q51 Q52  Q 5g Q5a Q5b Q5, B4
QGI Q62 Q6o QGa Q6b Q6 , 13 =(

Q71 Q72 Q79 Q7, Q7b Q7c CO 0
Q81 Q82 - Q8g Q8a Q8b Qsc C2

Q91 Qg2  Q99 Qga Qgb Qgc C4

QI Qa2 Qa Qaa Qab Qac 1)2
QbI Qb2 Qbg Qba Qbb Qb, D 4

QI Qc2  " Q, 9 Q,& Qcb Qrc D6

Expressions for Qij with i or j = 1, 2, 3,..., 9, 10,a, b, c. are given in Appendix B.

A dispersion relation is obtained by setting the 12 x 12 determinant to zero.

IIQII 0o (5)

Obviously, (51) will be solved numerically.

.7.e
, -........... ....-..-.................
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5. Discusssio and Numerical Examples

Before numerical results are presented, it would be helpful to enumerate the simi-

larities and differences between elliptical fibers and biaxial fibers purely from a

mathematical view point. As discussed in Section 4, (20a) and (20b) can be reduced to

the usual wave equations by a simple substitution: x" = (nry/nrz) x or

y' = (nrx/n) y for the core region, and corresponding substitution for the cladding

region. Thus a biaxial fiber with a circular cross section can be viewed as an isotropic

fiber with an elliptical cross section so far as the differential equations for the zero-order

solution are concerned. However the scaling factors for the core and the cladding

regions are not necessarily the same, so the ellipticity of the core may differ from that

of the cladding. The main difference between two types of fibers is the way ex and ¢y

are coupled. For elliptical fibers, the coupling occurs only at the core-cladding boun-

dary. For biaxial fibers, coupling originates not only from the boundary, but also from

the entire biaxial region or regions. This is due to the terms - and -- in (20a)
ax y 0x 0y

and (20b). Even for the coupling at the boundary, there is a difference. In matching

dr at the core/cladding boundary, it is necessary to account for the difference between

nxr and nyr, nxd and nyr.

Since the characteristics of optical waveguides depend more on the index

differential and/or index anisotropy than the index itself, the results can best be

described in terms of index differential and anisotropy. As stated previously, the

indices of the core and cladding regions are (nrx , nry , nr) and (ndx , nay, nd) respec-

tively (Figure 1). The index difference between the core and the cladding regions is

defined as

drd (firm - ndm)/nrm (52)

where



Snrm =max of (nrx,nry

ndm = wax of (ndx,ndy)

Similarly the index anisotropy of the core and the cladding regions are:

dxyr = (nrx - nry)/nrx (53a)

dxzr = (nrx - nrzj/nrx (53b)

dxyd = ('dx - ndy)/ndx (53c)

dxzd = (ndx - nd.)/nd. (53d)

_ In all numerical calculations, nxr is set to 1.5000 while other indices are varied by

changing d xyr, dxyd and drd etc. To make the numerical results more meaningful, they

are cast in terms of generalized parameters V and b,

V=-ka r2m-m (54a)

b ( (N 2 - n2m) / (11~m - 12 (54b)

which are the same as those used for isotropic fibers.

The transverse electric fields for two lowest polarization modes have been

obtained, using the method developed in the previous sections. The fields for the

-- lowest polarization modes are depicted in Figures 2a and 2b, and those for the second

lowest lolarization mode are given in Figures 3a and 3b. In these plots, Iexi and leyl

- are plotted as functions of x/a and y/a. To reveal the details of each field components
I
" clearly, it is necessary to use different scale factors for different plots. To show the

relative amplitude of I and Iej , the ratio of I exI peak/I eI Ipek or

i ey peak/I exI peak is also indicated in the plots. For the lowest order polarization mode

(Figures 2a and 2b), the peak of I xj is approximately 128 times stronger than that of

"'" " '" " " " '" ' "" " " * -""?.. "'" " " " "" " * " ." . .. . !



eI. On the other hand, for the second lowest order polarization mode of the same

fiber and with the same V value (Figures 3a and 3b), JeyI is much stronger than that

of Ie. Comparison of these plots also reveal that that the I e. I and I ey of the

lowest polarization mode are very similar to that of eyI and I e1 of the second lowest

order polarization mode. Similar results have also been obtained for the same fiber

with different V value or for different fibers. In summary, we note for each polarization

mode, both field components are present, one field component is much stronger than

the other. In addition, the dominant field component (I eI of Figure 2a and I ey of

Figure 3b) has a peak at the center of the fiber, just like those of the LP 11 modes for

the conventional isotropic fibers. The accompanying and much weaker field com-

* ponent (i.e.Iey I of Figure 2b and Ie.I of Figure 3a respectively) has an entirely

different look: a null at the fiber center, surrounded by four peaks, one in each qua-

drant. Our calculations also show that fields extend much more into the cladding

region when the V value is small, i.e., the fibers are operating near cutoff. Of course

this is expected.

For the fiber discussed, nx > nry and ndx > ndy. and the dominant electric field

. of the lowest polarization mode is e.. On the other hand, for the second lowest order

polarization mode, the dominant electric field is ey. In general, for a given fiber, the

lowest order polarization mode is the mode with the dominant electric fields along the

direction with the large index of refraction. Since this polarization mode has the larg-
est propagation constant, it will be idenf-ied as mode s. The second lowest order

polarization mode, labeled as mode f, has its dominant electric field along a direction

perpendicular to that of mode s. The normalized b parameters, as defined in (54a) and

(54b), of these two polarization modes are labeled as b, and br. Curves of b" vs V for

various values of dxyr and dxyd etc. are indistinguishable, as sho%n in Figure 4. Ilow-

ever, curves for br do vary with dxyr and (Ixyd Of particular interest is the b8 - br. In
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Figures 5, 6 and 7, b. - b1 is plotted as a function of V with d13 r and dxyd as parame-

ters. In Figure 5, dxyr is kept to a constant while dxyd varies. We note that near

cutoff, bs - br is appreciable if d1 yd is large. This is understandable. When a fiber is

operating near cutoff, fields spread out to the cladding region, and therefore, the clad-

ding anisotropy dxyd should and do have an strong influence on the fiber characteristics.

On the other hand, for fibers operating far from cutoff, fields are concentrated in the

core region and therefore dxyr has a large impact on the b, - br. This is shown in Fig-

ure 6 where dxy d are kept constant while dxyr varies. In Figure 7, dxyr = dxyd and they

vary simultaneously. For these cases b. - bt is practically independent of V.

6. Coupling with Biaxial Fibers

Although the excitation of low-birefringent fibers by plane waves or gaussian

beams, or the coupling between these fibers with planar or channel waveguides have

been studied extensively, the corresponding problems involving high-birefringence fibers

have not been treated previously. The main stumbling block is the lack of an accurate

description of fields in high birefringence fibers. With the theory developed in this

*i report, such a diffcuity no longer exists and one shall be able to proceed to study these

coupling problems. In the following, we shall outline the basic procedure for treating

the coupling problems and present some of the results.

Let the transverse field components of the polarization mode v be 0,, and t

Then the transverse electric fields in the fiber can bc expressed as

,a ". = , c N . (55)

For a given incident field gin, c1, is given by

e f(gin x t,,)ji, ds (56)

where i. is the unit vector in the z direction. Thus the dependence of c, as a function

S2.
- . -'-o°.A A

1
S 1 A l A . ,..&N.



-I of the state of polarization (SOP) of the incident field and under various excitation

conditions can be determined. We assume that Zt, and !;,, are normalized so that the

power coupled to the polarization mode i is proportional to Ic 2.

This approach has been employed to study the excitation of low birefringent as

well as high birefringent fibers. The contrast between these two types of fibers is quite

interesting. Take the case of plane wave excitation as an example. As the input SOP

of changes, the SOP of the fields in the low-birefringent fibers changes with the input

SOP, but the total power coupled into the fibers remains unchanged. On the other

hand, for high-birefringence fibers, both the SOP and the total power vary as the input

SOP varies.
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Apeni A

In this Appendix, the expressions of roo(r) etc. are listed.
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Appendix B

The expressions for the matrix elements of Q matrix are given in this Appendix.

Functions foo(r) etc. are listed in Appendix A. A 'signifies differentiation with respect

to r.
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